Two-Species Branching Annihilating Random Walks with One Offspring

نویسندگان

  • Sungchul Kwon
  • Hyunggyu Park
چکیده

The last decades have seen considerable efforts to understand nonequilibrium absorbing phase transitions from an active phase into an absorbing phase consisting of absorbing states [1]. Once the system is trapped into an absorbing state, it can never escape from the state. Various one dimensional lattice models exhibiting absorbing transitions have been studied, and most of them turn out to belong to one of two universality classes, the directed percolation (DP) and the directed Ising (DI) universality classes. While models with the Ising symmetry between absorbing states belong to the DI class, models in the DP class have no symmetry between absorbing states [1,2]. It is generally accepted that the dimensionality and the symmetry between absorbing states play important roles in determining the universality classes as in equilibrium critical phenomena. To find out new universality classes, it is natural to study models with higher symmetries than the Ising symmetry. To achieve a higher symmetry, such as the Potts symmetry, one may increase the number of absorbing states. However, the models with higher symmetries investigated so far turn out to be always active and are only critical at the annihilation fixed point of zero branching rate [3]. A recent field theoretical study may provide a possible explanation for this [4]. Although there is no stable absorbing phase, critical behaviors near the annihilation fixed point are non-trivial and form new universality classes [4,5]. In systems with more than two equivalent absorbing states, there are various kinds of domain walls (or kinks) that cannot cross over each other to retain the order

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reentrant phase diagram of branching annihilating random walks with one and two offspring.

We investigate the phase diagram of branching annihilating random walks with one and two offsprings in one dimension. A walker can hop to a nearest neighbor site or branch with one or two offsprings with relative ratio. Two walkers annihilate immediately when they meet. In general, this model exhibits a continuous phase transition from an active state into the absorbing state (vacuum) at a fini...

متن کامل

Universal behavior of one-dimensional multispecies branching and annihilating random walks with exclusion.

A directed percolation process with two symmetric particle species exhibiting exclusion in one dimension is investigated numerically. It is shown that if the species are coupled by branching (A-->AB, B-->BA), a continuous phase transition will appear at the zero-branching-rate limit belonging to the same universality class as that of the two component branching and annihilating random-walk mode...

متن کامل

Universality Class of Two-Offspring Branching Annihilating Random Walks

We analyze a two-offspring Branching Annihilating Random Walk (n = 2 BAW) model, with finite annihilation rate. The finite annihilation rate allows for a dynamical phase transition between a vacuum, absorbing state and a non-empty, active steady state. We find numerically that this transition belongs to the same universality class as BAW’s with an even number of offspring, n ≥ 4, and that of ot...

متن کامل

On Survival and Extinction of Caring Double-branching Annihilating Random Walk

Branching annihilating random walk (BARW) is a generic term for a class of interacting particle systems on Z in which, as time evolves, particles execute random walks, produce offspring (on neighbouring sites) and (instantaneously) disappear when they meet other particles. Much of the interest in such models stems from the fact that they typically lack a monotonicity property called attractiven...

متن کامل

Survival and Extinction of Caring Double-branching Annihilating Random Walk

Branching annihilating random walk (BARW) is a generic term for a class of interacting particle systems on Z in which, as time evolves, particles execute random walks, produce offspring (on neighbouring sites) and (instantaneously) disappear when they meet other particles. Much of the interest in such models stems from the fact that they typically lack a monotonicity property called attractiven...

متن کامل

Branching annihilating random walks with parity conservation on a square lattice

Using Monte Carlo simulations we have studied the transition from an “active” steady state to an absorbing “inactive” state for two versions of the branching annihilating random walks with parity conservation on a square lattice. In the first model the randomly walking particles annihilate when they meet and the branching process creates two additional particles; in the second case we distingui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000